..

ナノサイエンスジャーナル: 現在の研究

原稿を提出する arrow_forward arrow_forward ..

音量 8, 問題 2 (2023)

ミニレビュー

DPPH Assay Comparison ELISA Plate Wells with Different Concentrations

Jhon Martin*

Surface engineering of nanoparticles has contributed to the advancement of nanoscience and nanotechnology by creating novel materials with a variety of functional properties and applications that are based on their surface modifier. Dispersed nanoparticles can alter the interfacial properties of a liquid-liquid system in the aqueous phase if their surface is altered by an ionic surfactant. The interfacial energy of the nanoparticle brine system and ions tend to alter pore channel transport and improve recovery. The ability to easily counterbalance gravity's force with induced sedimentation stability is one of the advantages of using particles suspended at nanoscales. This was made possible by their nanosize, nanostructure, high volume to surface ratio, and strong interaction with rock fluids.

研究論文

Ultrasound-Assisted Synthesis of Iron Oxide Nanoparticles: Application in Cytoxocity and Antibacterial Activity

Sahar Qasim*, Mazin K Hamid and Mais E Ahmed

At the present time, the phenomenon of antibiotic resistance has increased by different species of bacteria. In this way, particularly in the situations of Metal Nanoparticles (MNPs) fabrication and MNPs surface modification, the emergence of nanotechnology as a new weapon has drawn increased attention. Currently, the safe way to manufacture nanoscales is at the lowest possible cost and the least harm to the environment of Fe2O3 NPs with novel shape through Ultrasound assisted. Ultraviolet Visible Spectrophotometer (UV-Vis), Energy Dispersive Xray spectroscopy (EDX), Scanning Electron Microscopy (SEM), Atomic Force Microscopic (AFM), X-ray Diffraction (XRD). These techniques were applied for physical characterization. Disc diffusion assay and Minimum Inhibitory Concentration (MIC) (16 μg/ml), were evaluated against gram negative (P. aeruginosa, Klebsiella spp.) and gram positive (S. aureus, S. pyogenes) Fe2O3 NPs with an average diameter size of 30 nm. Where the activity of iron nanoparticles prepared by a physical method showed a distinct activity against selected cancer cells.

インデックス付き

arrow_upward arrow_upward