..

一般化された嘘理論と応用のジャーナル

原稿を提出する arrow_forward arrow_forward ..

Centralizers of Commuting Elements in Compact Lie Groups

Abstract

Kris A Nairn

The moduli space for a flat G-bundle over the two-torus is completely determined by its holonomy representation. When G is compact, connected, and simply connected, we show that the moduli space is homeomorphic to a product of two tori mod the action of the Weyl group, or equivalently to the conjugacy classes of commuting pairs of elements in G. Since the component group for a non-simply connected group is given by some finite dimensional subgroup in the centralizer of an n-tuple, we use diagram automorphisms of the extended Dynkin diagram to prove properties of centralizers of pairs of elements in G.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

この記事をシェアする

インデックス付き

arrow_upward arrow_upward