..

公衆衛生と安全の国際ジャーナル

原稿を提出する arrow_forward arrow_forward ..

Modeling Human Behavior in Pandemic Crowding: Adaptive Learning in Agent-based Models

Abstract

Manisha Nilam*

This study delves into the complex dynamics of human behavior in the context of pandemic crowding, employing agent-based models with adaptive learning mechanisms. The abstract explores the innovative approach of integrating adaptive learning into agent-based models to simulate and understand how individuals respond to crowded environments during pandemics. By combining insights from behavioral science and computational modeling, this research aims to unravel nuanced patterns in human decision-making, contributing to the development of more robust strategies for managing and mitigating the impact of pandemics on crowded spaces.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

この記事をシェアする

インデックス付き

arrow_upward arrow_upward