..

分子組織学および医学生理学ジャーナル

原稿を提出する arrow_forward arrow_forward ..

Utilizing Deep Learning for Comprehensive Lung and Lesion Quantification in Computerized Tomography Amidst Inconsistent Ground Truth

Abstract

Devashish Nath

Computed Tomography (CT) imaging plays a pivotal role in diagnosing, characterizing, predicting outcomes, and tracking disease progression in individuals affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Yet, for a consistent and dependable assessment of pulmonary irregularities, precise segmentation and quantification of both the complete lung and lung lesions (anomalies) in chest CT scans of COVID-19 patients are indispensable. Regrettably, the manual segmentation and quantification of extensive datasets can prove time-intensive and yield low levels of agreement both between different observers and within the same observer, even among experienced radiologists.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

この記事をシェアする

インデックス付き

arrow_upward arrow_upward