Nur Khatijah Mohd Zin,Katsuhisa Sakaguchi*, Yuji Haraguchi, Azuma Takahashi, Sara Suzuki, Takanobu Yagi, Tatsuya Shimizu, Mitsuo Umezu
The suspension culture system is an increasingly popular method of culturing cells not only because of its up scaling ability, but also the non-enzymatic procurement of cells that is crucial for biomedical research, especially in the fields of pharmacology and regenerative medicine. Hypothetically, by controlling and reducing the shear stress applied to cells in a culture system, the higher viability and proliferation rates. In this study, we analyzed HEK 293 cells cultured with a commercially available spinner flask and our newly developed spinner flask which utilizes the theory of Couette flow for controlling shear stress. Fluid analysis and metabolic analysis of the cultured cells were measured at three different rotational speeds, 40, 50 and 60 rpm. It was apparent that 50 rpm was by far the best speed to proliferate the cells. A further viability test was also done in order to validate our hypothesis. Furthermore, by using the metabolic analysis results, it was observed that in the controlled stress system, the consumption of glucose doubled and lactate production was significantly higher compared to cells that were maintained in the conventional suspension method. Thus, Couette flow based suspension culture system will be a major contributor to the future biomedical and pharmacological field.
この記事をシェアする