..

バイオメトリクスと生物統計学ジャーナル

原稿を提出する arrow_forward arrow_forward ..

Accelerated Failure Time Models with Auxiliary Covariates

Abstract

Kevin Granville and Zhaozhi Fan

In this paper we study semi-parametric inference procedure for accelerated failure time models with auxiliary information about a main exposure variable. We use a kernel smoothing method to introduce the auxiliary covariate to the likelihood function. The regression parameters are then estimated through maximization of the estimated likelihood function. A consistent estimator of the variance of the estimator of the regression coefficients is proposed. Simulation studies show that the efficiency gain is remarkable when compared to just using the validation sample. The method is applied to the PBC data from the Mayo Clinic trial in primary biliary cirrhosis as an illustration.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

この記事をシェアする

インデックス付き

arrow_upward arrow_upward